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ABSTRACT

It is generally believed thnt the heating of the solar corgna
is cauged by waves origimating in the photocphnro and propagating into
tha corona where their emergy is dissipated, The medium through which
these waves propagate is in general permeated by magnetic fields complicating
the behavio#of this propasgation conaiderably. mm-—-ufw
the Ghve motions in a plasma permeated by constant magnetic and gtlvitationnl
field..w;%ﬁ, three wave modes were found, wirtcirwe-csllad the
{m0dey—modo—and—the—Adfven-made, &ach 3‘6'%5‘ fewnd—so-be strongly
coupled to sach of the three kinds of motion; acoustic, gravity, and
hydromagnetic, However, the Alfvén mode was found to be separable from
the dispersion relation and therefore independent of compressibility
and gravity, The local dispersion relation {s derived and expressed
in nondimensional form independent of the cunstants that describe a
.particular atmosphere. From the dispersion relation one can show that
rising waves propagate either with a constant cor a growing wave amplitude
depending on the magnitudes and directious of the gravitationmal field,
magnetic field ‘and the wave vector, The variation of the density with
height is takeu into account by a generalized W.K.B, matiod. Equations

are found which give the height at which wave reflectiom occurs, giving

the upper bound for possible wave propagatica,




s e v——" ———

P Tt ¢ e ——t

MAGNETO-GRAVITY WAVES AND THE HEATING OF THR SOLAR COROEA

I. INTRODUCTIGH

The extremely high temperatures of the solar eorona are
generally believed to be due to the transfer of energy from the
convection sone by waves. The waves that have been considerovd are
acoustic waves, gravity waves end hydromagnetic waves. Ome vaery
special situation of magneto-gravity waves has been ireated by Iﬂ‘t).
However, in a magnetised plasma aitmosphere, it is in ws.noiplo not
correst to consider either one of these mcdes independently of the
others. All modes interact with each other and must be comsidered
simultaneously. Therefore, we have investigated plasma wave propagation
within a magnetised atmosphere uf infinite conductivity umder the influenoce
of gravity in the magneto-hydrodynamic (M.H.D.) approximation, whioh
is valid for low-frequency waves. We only consider the propagation of
these waves and therefore neglect dissipative effecis arising from
visocsity, eleotrical resistivity and heat condustiviiy.

In the equilibrium state, we allow for the exponential dependonce
in height (gz-direction) of the density and pressurs, as is certainly
the case for an isothermal atmosihere. In {.ue second part of tiis paper,
this variation of density with height in the magnetic field term in the
equation of motion is taker into account by a generalised W.X.B, method.

The addition of & magnetic field complicates the problem, not
only by the introduction of ancther wave mode, dbut alao due to the faot
that the magnstio field is a vector, theredby oreating a third dixectiom,
whioh can be aligned arbitrarily with respect to the gravity vector
and the wave veotor 2. :

2. FUEDAMENTAL EQUATIONS

The fundamental equations necessary to describe the wave mctioms
are (in Gaussian units)




Euler equation
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In this equation y is the velocity veotor of a partiole of the
oscillating medium, p is the pressure, P th. density, ltho gravity
vector, and H the magaetic field veotor. For convenience we choose

g to be along the negative s-directiom (dewnwaxd ), and we ohoose to
orient the coordinate system so that the arbitrarily direoted umperturbed
magnetio field in the absence of wave motion has no y-oomponent.

Continuity equation

an

;. * V- (ew =0 (2.2)

Second law of thermodynamios (adisbatic approximstion )

d - 9 -
3.:; = 5{.+!.Va o , (2.3)

where s is the specific entropy.

Equation of state (differential forsm)

op | dp
d?-‘a—s'f’ ds + b_?-l3 d? « (2.4)




Ohm-¥axwell equntion
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For the equilibrium oconditions for an ideal gas st oconstant
temperature; the variation of density and pressure with height is
exponential, Thus, we have at equilibrium

and (2.6)

where h = az/gf is the "soale height".

3. LINEARIZATION

By assuming that all deviations of the perturbed gquantities
from their equilibrium values are small, we may put

_ -s/h
P(zyt) = [Fo + p'(_z;,t)] E
s/h

p(est) = [p, + ' () ] .

o(zyt) = ey * s'(x,t)




and

H = H, + H'(z,t) ’

(3.1)

where P , Po, and E, are oonstant. The quantities Py p'y 8' and
H', together with the velooity v = v(r,t) are considered to be
perturbing quantities of firs: order.

By oonsidering the equilibrium oonditioms and the linearisation
of the basic equations, aqs. (2.1), (2.2), (2.3), (2.4), and (2.5),
and upon taking the time derivative of the Euler equation (2.1),
we have updén substitution
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where o is the unit veotor in the z-~direction and a is the velooity
of sound, This veotor differential equation (3.2) is the lineavis~d
equation of motion and it represents a set of three linear homogeneous

differential equations for the unknowns V, V}

Using the assumption of a perfect gas, the expression given
above for the scale height, and well-known thermodynamio expressions
relating the density, pressure, entropy and temperature, one finds

and V!o

s\ G5,

P

where Y is the ratio of spesifio heats.

By the substitution of eq. (3.3) into (3.2), we have the
linearized equation of motion

¥y
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ot
1
+ -;— goxourlourl(lxgo) - 0
Foq

(3.4)

4. LOCAL DISPERSION RELATION

In the loocal situation, we assume the wavelength to bs sm&ll
oompared to the socale height. This assumption allows us to consider
P% as a constant in the last term of e¢. (3.4). Thus, this equation
is now a second-order differential squation with ocustant ocefficients,
vhich yields to a plane-wave solwiion. For plane waves, we have
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where v is now & constant vector.,

Upon substituting eq. (4.1) into eq. (3.4) and performing the
mathematical operstioms, we have

Sy-ofk DE+i(x-Pr+i{y-1)(k-g

i
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+

B, x{_l_:,x[l_:, x(y = go)” = 0
(4.2)

The vector equation (4.2) rep-erents a set of three linear
homogeneous equations for the unknowns v, , v, and Vg e Ths
ocondition for a non=tririal solution, the vanishing of the determinant
of the coefficients, is properly ocalled the loce”™ dispersion relation
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Eq. (4.3) ocan be factorized into two parts, where one part
tums out to be the Gispersion relation for the Alfvéen mode and the

_other part is the dispersion relation for two distinct modes, whioh

involve the intimate ocoupling of magneto=-hydrodynamio and gravity
wave motion., By factorization, we obtain

(B, * k)
W e T (the Alfvén mode)
4mp g
(4.4)
end
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From eq. (4.5),whioh is quadratio in w®, we obtain two other modes
whioh we call the + mode and the = mode.
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BEq. (4.6) ia writven in a non-dimensional form by the use of a
characteristio frequency and a charaoteristioc wave number, defined by

T & AN (4.7)
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The non~dimensional frequemnoy end wave number are
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and furthermore
@ ?eq is ibe ratio of
= e R 8 ratio
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hydrostatic pressure to magnetic pressure. & iz the angle between

kand §, 0 is the angle between H_ and g and % is the angle
beiween k and E,-

In genernl, the dispersion relation is ccmplex,which implies
the existence of ‘waves with either exponentially increasing or decreasing
wave amplitude, corresponding to rising or {alling waves, respectively,
This bekaviowcan be easily understood. A rising wave propagates into
a medium of decreasing density., As a result, a decreasing number of
fluid elements will participate in the wave motion, so that im order to
conserve wave erergy, the wave amplitude has to grow. By a similar
argument the wave amplitude for falling waves must decrease. In the
following analysiz we will omit the falling waves with decresasing wave
amplitude, since they are of no relevance to the heating of the solar
corona. The rising waves with growing wave amplitudes will eventually
steepen into shock wavea accompsnied by a large energy dissipation,
However, under ce-tain conditions the waves can propagate with comstant
amplitude, depending on the magnitude and directiom of the wave number
vector, if the restoring forces of compressibility, gravity, and
magnetic field tend to interfere.

The peculiar depe=dence of growing wave amplitudes npon the
angles & , 7, and P is sbsent in treatmenta which neglect the

coupling of hydromagnetic and internal gravity wave motion, For certain
angle configurations and ranges of the wave number there is no wave growth
and hence no shock waves, In these cases the wave propagates with
constant amplitude; therefore the imaginary part of the frequemcy must

be zero., This condition is xiv 1 in nondimensional form by

B = :r[i(o’ +Dé)i-%]i s {4.8) )

where the upper sign represernts the + mode and and the lower sign
reprosents the - mode, and w¥kore

= (-;)3/2 (S*K cos 9 3
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5. WX .B. APPROXIMATION

We assumed above that pé in the magnetioc term in the egquation of
motion (3.4) could be considered a ocastant in the lowsat approximation
if the wavelengih was small compared with the scale height., 4 better
approximaticn is obtained by taking into acoount the sluowly varying
change of the equilidrius density in the vertical direciiom by a
generaliged W.X.B. method,

Toward this end, we take a Fourier transform of eq. (3.4) for
the X = 7 -~ t dependence and then introduce the s-dependeace by means
of an unknown fumotien f(s). We put

Xx,7,8,t)=> 5 2(s) ei(k‘x+k’7-“t) y  (54)
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vhere Y, is a ozastant veotur and

2(s) = A(s)e &) (5.2)

A(z) is a slowly varying funotion of s. We oollect the terms

dA) dd d*®
(K) -d—; and A a2t into one equation and the terms

2
A, A ﬂ_ and A(ﬂ) into a seocond squation. In the spirit
dz dz

of the W.K.B. approximation (short wavelength approximation), we

neglect terms multiplied by :“ and i—‘l . Both of these equations
: 'l

are three-dimensional veotor equations for Y. and the oondition for

a non-trivial solution is determined by setting the determinant of

the oocefficients cf each system of equationsequal to sero., From the
first equation we obtain s first-order diffsrential equation with the
solution

A -cm:t(%) * (5.3)

whioh is the expeoteéd relation between the amplitude and phase from
employing the W.XK.B. method, Fron the second nquation we obtain a first-
order differential equation of the sixth degree for the phase &(s).

This differential equation can bde faoctorised into two differential equatioms
of the second and fourth degree in a similar manner as the local dispersion
relation was factorissd into iwo algebraic equations of the seocond and
fourth order. These two differential equations are

=12~




(5.4)
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where k, =k, & _+ k?g y and o, and _a? ere unit vectors in the

x- and y-direction, respectively. The solution of the differential

2q. (5.4) gi7es the phase for the ¥.K.B. solution for the Alfvén mode,
The solution of the differential eq. (5.5) gives ihe pkase for the

WX .B. solution of the two remaining modes., Both of these differential
equations >an be brought into a form that oan be solved by the separatiom
of variables, after first solving voth ‘oqutim- algebraic squations
of the second and fourth degree in the unknown I§. « This can always
be done in closed form for an algebraic equation up to the fourth degies.
By putting.‘i% « 1 k_in eq. (5.5), we obtain the seme dispersion Telation
a8 6q. (4.5), whioh thevefore justifies calling eq. (4.5) the local
dispsreion relatiom. »
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The oondition -;l% = 0 mpliea that the z-conpouent of the

wave nun'ber vector i is zero. “Phis gives the ‘oondition :tor the taminat:lon

of the wave propagaﬁon in the z-direotien, ‘that is, the vertioai " '

3 ;‘Fenetra%im depth. At this point KXok, J Se*ttine-a-é =0'in ‘oq. (5'4)

and using the definition of p‘, (the ﬂ.:m oquation of’(e.ﬁ), g:lvn
upon -olvmg for ﬁa pfmotntim dopth, ’d , ’
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whkare h is the scale h; 2o 'I'his is the ponetration depth for the
Alfvén mode, Setting —= iz -0 in eq. (5.5) ‘glves upon solving for

the penetration depth |
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amplitudes. These growth rates may easily be determined from our
dispersion relation. One mode, identical with the Alfvén mode, has
always oconstent amplitude and is independent of compressibility and gravity.

From the dispersion rolations fox the + and - modes, it can be
seen that there is a large anisoiropy with regard to oonstant amplitude
wvave propagation. This behaviour does not ocour in a treatment
negleoting the wave mode coupling. Therefore, cur resulis suggest that
a search bte made for this anisiropy in gravity wave prvpagatio‘u in
the duter solar aimosphera,
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